
Slide-1 11.05.2022

LIN-Basics

Lipowsky Industrie-Elektronik GmbH

Slide-2 30.03.2022

➢ 1 wire bus (+ Gnd and Vbat)

➢ Master / Slave concept, always only one master

➢ Only one master at a time

➢ No one speaks without permission of master

➢ The master assigns the bus to itself or to a node for a

defined time by sending a certain item.

➢ During this time the bus is then available to this node,

which can place data on the bus.

➢ Typ. bus speed 9600...19200 Bit/s

Maximum as per LIN specification 20 Kbit/sec

➢ Often there are several LIN buses in one vehicle.

Then the function for ambient lightning, buttons, climatic

actuators, seat control are often to different busses.

Master

LIN

Slave1

Slave2

Slave3

LIN-Basics

Slide-3 30.03.2022

➢ Bi-directional communication over one implemented

by open-collector output stages.

➢ Each node has a switch (Tx), which can pull the bus

line to GND.

➢ If all switches are open, the bus line is pulled high to

plus (typ. 12 V) by a pull-up resistor.

➢ The necessary pull-up is distributed over the nodes:

Master Pull-Up 1 KiloOhm

Slave Pull-Up 30 KiloOhm

➢ Each node can read back the state of the LIN bus line

(RX)

Master Slave1

Slave2

Slave3

LIN

LIN Single Wire Hardware

Slide-4 30.03.2022

A LIN bus with one master and 3 slaves can be reduced to the

simplified circuit diagram shown on the left.

As soon as one of the nodes activates its output switch, the bus

will have a low level, only if all output switches are open, the bus

will be pulled up to its high level.

Since a single node is sufficient to determine the low level by

closing its switch, this is called the dominant level.

Accordingly, the High level, for which all nodes must have their

switches open, is called recessive level.

All pull-up resistors are connected in parallel, so the effective

pull-up resistance value corresponds to the parallel connection of

all pull-up resistors.

12V board supply

LIN bus

Ground

The LIN bus has only 2 states:

Recessive high state (all switches open)

Dominant low state (at least 1 switch closed)

All information that is transferred via the bus is coded by the chronological sequence of

these two states.

LIN-bus dominant / recessive states

Slide-5 30.03.2022

For a better understanding of the effect of the pull-up on the

signal edges, the equivalent circuit diagram is supplemented by

a capacitance (capacitor).

This is formed by summing up the input capacitances of all LIN

nodes and the line capacitance of the LIN bus line.

All pull-up resistors are connected in parallel so that the effective

pull-up resistance value corresponds to the parallel connection

of all pull-up resistors.

Since the line is actively pulled against GND when the dominant

level is switched, the falling edge is correspondingly steep.

When the switches are opened, the discharged input

capacitance must be reloaded to the high level via the pull-up.

The higher the pullup resistance is, the flatter the rising edge

becomes.

Edges that are too steep can lead to EMC problems and edges

that are too flat can lead to misinterpretation by the UART.

Therefore a correctly dimensioned pull-up resistor is very

important!

12V board supply

LIN bus

Ground

LIN-Bus Signal Flanken

Close switch Open switch

Recorded with deactivated Slope Control

Slide-6 30.03.2022

Most LIN nodes contain the following 2 components:

➢ Mikrocontroller with integrated UART

➢ LIN-Transceiver

The UART converts data bytes into asynchronous serial patterns for

transmission and decodes data bytes from the received serial data

stream.

It also generates break and wake-up signal patterns; this can either

be implemented by special LIN functions of the UART or must be

implemented by sending a binary 0x0 at a different baud rate or by

bit-banging the TXD port under timer control.

The LIN transceiver translates the logic levels of the microcontroller

(typ. 3...5V) into the LIN voltage range (8...18V) and converts the full-

duplex RXD/TXD interface into a 1-wire half-duplex interface.

Baby-LIN systems

(Generation 2) use a

NXP MC33662

LIN Transceiver

LIN node

LIN bus
8...18V

Microcontroller

UART

LIN Tranceiver

TXD RXD

LIN

Enable

3V/5V

Node specific
hardware

LIN Bus Hardware

Slide-7 30.03.2022

LIN Bus Hardware

LIN node

LIN bus
8...18V

Microcontroller

UART

LIN Tranceiver

TXD RXD

LIN

Enable

3V/5V

Node specific
hardware

Further functions of a typical LIN transceiver are

➢ Timeout monitoring of the dominant level

➢ Slope control of the signal edges

➢ Switch to a high speed mode to allow baud rates higher than 20 Kbit

(e.g. for ECU flashing)

=> Disable Slope Control

LIN signal trace with slope control:

Slide-8 30.03.2022

There are 3 basic signal patterns on the LIN bus:

1. Wake up Event

Low level pulse with 250us...5 ms length Slave

recognition Low pulse >= 150 us, Slave should

be able to process commands 100 ms after the

rising edge of the bus.

2. Break

Low level with a length of at least 13 bit times

followed by a high level (break delimiter) with a

minimum duration of 1 bit time, is always sent by

the master to mark the start of a new

transmission (frame).

3. Asynchronous transmitted character (0....255)

Any 8 bit character (UART transmission) with 1

start bit, 8 data bits, 1 stop bit, no parity

The LIN Sync field corresponds to the character

0x55.

UART Frame 10 bits

start
bit

stop
bit

data
bit0

data
bit1

data
bit2

data
bit3

data
bit4

data
bit5

data
bit6

data
bit7

 Data 0x00 ...0xFF

 UART Frame 10 bits

start
bit

stop
bit

data
bit0

data
bit1

data
bit2

data
bit3

data
bit4

data
bit5

data
bit6

data
bit7

 Data byte 0x55 = SYNC

0V

12V
Break duration

minimal 13 * bittime

677us (19200)
1354us (9600)

Break delimiter
minimal 1 bittime

0V

12V

250us

5000us

LIN-bus communication primitives

Slide-9 30.03.2022

Frame Header:

➢ Break field Indicates the beginning of a new frame, at least 13 bit times long, in

order to be able to distinguish it reliably from all other characters

➢ Sync field Allows the resynchronization of slave nodes with imprecise clock sources

by measuring the bit times and reconfiguring the UART baud rate. Sync

field is always sent by the master.

➢ Protected Identifier A character with the frame ID. The 8-bit character contains 2 parity bits to

protect the identifier, resulting in a total frame id range of 0...63.

Data Section

➢ Data1…Data N 1...8 Data bytes which contain the information that will be transmitted.

➢ Checksum byte Contains the inverted 8 bit sum with Carry handling over all data bytes

(Classic checksum) or over data bytes and Protected Id (Enhanced checksum)

LIN V.1.x => Classic Checksum

LIN V.2.x => Enhanced Checksum

LIN Frame Bestandteile

Data transfer on the LIN bus

The smallest unit is a frame.

Slide-10 30.03.2022

Protected Id

The frame ID identifies the frame. It is 8 bits in size,

but 2 bits are used as parity bits, leaving only 6 bits

for frame identification. Thus there are only 64 different frames on a LIN bus.

Paritybit P1 (ID.7) Paritybit P0 (ID.6) Identifier Bits ID.5 - ID.0

!(ID.1^ID.3^ID.4^ID.5) ID.0^ID.1^ID.2^ID.4 0…63

Id dec Id hex PID Id dec Id Hex PID Id dec Id hex PID Id dec Id hex PID

0 0x00 0x80 16 0x10 0x50 32 0x20 0x20 48 0x30 0xF0

1 0x01 0xc1 17 0x11 0x11 33 0x21 0x61 49 0x31 0xB1

2 0x02 0x42 18 0x12 0x92 34 0x22 0xE2 50 0x32 0x32

3 0x03 0x03 19 0x13 0xD3 35 0x23 0xA3 51 0x33 0x73

4 0x04 0xc4 20 0x14 0x14 36 0x24 0x64 52 0x34 0xB4

5 0x05 0x85 21 0x15 0x55 37 0x25 0x25 53 0x35 0xF5

6 0x06 0x06 22 0x16 0xD6 38 0x26 0xA6 54 0x36 0x76

7 0x07 0x47 23 0x17 0x97 39 0x27 0xE7 55 0x37 0x37

8 0x08 0x08 24 0x18 0xD8 40 0x28 0xA8 56 0x38 0x78

9 0x09 0x49 25 0x19 0x99 41 0x29 0xE9 57 0x39 0x39

10 0x0A 0xCA 26 0x1A 0x1A 42 0x2A 0x6A 58 0x3A 0xBA

11 0x0B 0x8B 27 0x1B 0x5B 43 0x2B 0x2B 59 0x3B 0xFB

12 0x0C 0x4C 28 0x1C 0x9C 44 0x2C 0xEC 60 0x3C 0x3C

13 0x0D 0x0D 29 0x1D 0xDD 45 0x2D 0xAD 61 0x3D 0x7D

14 0x0E 0x8E 30 0x1E 0x5E 46 0x2E 0x2E 62 0x3E 0xFE

15 0x0F 0xCF 31 0x1F 0x1F 47 0x2F 0x6F 63 0x3F 0xBF

LIN frame security - Protected Id

Slide-11 30.03.2022

According to the LIN specification, the

checksum is formed as an inverted 8-

bit sum with overflow treatment over

all data bytes (classic) or all data bytes

plus protected id (enhanced):

The 8 bit sum with overflow treatment

corresponds to the summation of all

values, with 255 being subtracted each

time the sum >= 256.

Whether the Classic or Enhanced Checksum is used for a frame is decided by

the master on the basis of the node attributes defined in the LDF when

sending / receiving the data.

Classic checksum for communication with LIN 1.x slave nodes and Enhanced

checksum for communication with LIN 2.x slave nodes.

LIN frame security - Checksum

C-sample code:

uint8_t checksum_calc (uint8_t ProtectedId, uint8_t * pdata, uint8_t

len, uint8_t mode){

uint16_t tmp;

uint8_t i;

if (mode == CLASSIC)

tmp = 0;

else

tmp = ProtectedId;

for (i = 0; i < len; i++)

{

tmp += *pdata++;

if (tmp >= 256)

tmp -= 255;

}

return ~tmp & 0xff; }

Slide-12 30.03.2022

LIN frame transmission / reception

We now know how a LIN frame is structured.

Now we look at how a LIN frame is used to transfer

information on the bus.

The frame header is always sent by the master.

It is received by all connected nodes and they check the frame

ID.

If a node determines that it is the publisher for this frame ID, it

places the data for this frame on the bus.

So there is always only one sender (publisher) for the data of a

particular frame.

The master waits for the data from the slave, these must

appear within a certain maximum time.

So the master can recognize a missing slave by the missing

data.

Master Slave1

LIN

Slave3

Slave2

Slide-13 30.03.2022

LIN frame transmission / reception

Of course, there are also frames that transfer data from the master

to a slave, e.g. to transmit a command to a slave. In these cases the

master is defined as publisher for this frame.

Here the master sends the frame header and the data section.

The master cannot recognize whether the addressed slave has

received the frame or not.

Therefore, there is no confirmation mechanism for the LIN frame

transmission, which can be found, for example, on the CAN bus.

Of course, the whole concept only works if every node

(Master/Slave) connected to the bus knows whether it is the publisher

for a certain frame (=ID) or not.

The assignment of the frames to the nodes is defined in the LIN

Description File (LDF). Each frame (frame identifier) is assigned a

node as publisher.

Master

LIN

Slave3

Slave1

Slave2

Slide-14 30.03.2022

LIN description file LDF

LDF - Lin Description File

➢ Format and syntax of the LDF (LinDescriptionFile) are described in the LIN specification.

This specification has been developed by the LIN Consortium, in which various parties

such as car manufacturers, suppliers and tool suppliers were involved. This means that

the LDF specification is not dependent on a single manufacturer.

➢ Each LIN bus in a vehicle has its own LDF.

➢ This LDF summarizes all the characteristics of this specific LIN bus in one document.

➢ Which nodes are there on the bus?

➢ Which frames are defined for the bus (PID, number of data bytes, publisher)?

➢ Which signals are contained in a frame (signal size, signal mapping)?

➢ In which order should the frames appear on the bus (Schedule Table)?

➢ How to interpret the values of the contained signals, translation into physical units

(signal encodings).

Example: Byte Value Temperature (0...255)

0..253 temp [°C] = 0.8 * value - 35

0 => -35°C
100 => 45°C

253 => 167.4°C
254 means sensor not installed, signal not available

255 means sensor error, no valid value available

Slide-15 30.03.2022

Sample LDF file

LDF header

Node section

Signal section

LIN_description_file ;

LIN_protocol_version = "1.3" ;

LIN_language_version = "1.3" ;

LIN_speed = 19.200 kbps ;

Nodes {

Master: MasterECU,1.0000 ms,0.1000 ms ;

Slaves: Slave1Motor,Slave2Sensor;

}

Signals {

MessageCounter: 8, 0x00, MasterECU, Slave1Motor,

Slave2Sensor;

Ignition: 1, 0x0, MasterECU, Slave1Motor,

Slave2Sensor;

WiperSpeed: 3, 0x0, MasterECU, Slave1Motor;

Temperature: 8 ,0xFF, MasterECU, Slave1Motor,

Slave2Sensor;

WiperActive: 1, 0x0, Slave1Motor, MasterECU;

ParkPosition: 1, 0x0, Slave1Motor, MasterECU;

CycleCounter:16, 0x00, Slave1Motor, MasterECU;

StatusSensor: 8, 0x00, Slave2Sensor, MasterECU;

ValueSensor: 8, 0x00, Slave2Sensor, MasterECU;

}

Slide-16 30.03.2022

Sample LDF file

Frame section

Schedule table

Signal encoding section

Encoding to signal mapping

Frames {

MasterCmd: 0x10, MasterECU, 4

{ MessageCounter, 0;

Ignition, 8;

WiperSpeed, 9;

Temperature,16; }

MotorFrame: 0x20, Slave1Motor, 4

{WiperActive, 0;

ParkPosition,1;

CycleCounter,16; }

SensorFrame: 0x30, Slave2Sensor, 2

{StatusSensor, 0;

ValueSensor, 8; }

}

Schedule_tables {

Table1 { MasterCmd delay 20.0000 ms ;

MotorFrame delay 20.0000 ms ;

SensorFrame delay 20.0000 ms ;}

}

Signal_encoding_types {

EncodingSpeed { logical_value, 0, "Off" ;

logical_value, 1, "Speed1" ;

logical_value, 2, "Speed2" ;

logical_value, 3,“ Interval" ;}

EncodingTemp { physical_value, 0, 253, 0.8, -35, "degrees C" ;

logical_value, 254, "Signal not supported" ;

logical_value, 255, "Signal has error" ;}

}

Signal_representation {

EncodingSpeed: WiperSpeed;

EncodingTemp: Temperature;

}

Slide-17 30.03.2022

LIN application frames

With the information from an LDF, you can assign all frames that

appear on the bus to your publisher using the PID.

You can also interpret the data regarding the signals it contains…

LDF definition:

MasterECU = master

Slave1Motor = slave (wiper motor)

Frame with ID 0x10 has 4 data bytes

Publisher = MasterECU (master)

Databyte1.bit 0...7 message counter

Databyte2.bit 0 IgnitionOn (Klemme15)

Databyte2.bit 1...3 wiper speed

Frame with ID 0x20 has 4 data bytes

Publisher = Slave1Motor

Databyte1.bit 0 wiper active

Databyte1.bit 1 park position

Databyte2.bit 0...7 CycleCounter LSB

Databyte3.bit 0...7 CycleCounter MSB

Frame with ID 0x30 has 2 data

bytes

Publisher = Slave2Sensor

Databyte1 Sensor Status

Databyte2 ValueSensor

Break Sync Identifier Databyte1 Databyte2 CheckSumBreak Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4 Break Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4

ID=0x10
PID=0x50

ID=0x20
PID=0x20

ID=0x30
PID=0xF0

Slide-18 30.03.2022

LIN application frames

Break Sync Identifier Databyte1 Databyte2 CheckSumBreak Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4 Break Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4

ID=0x10
PID=0x50

ID=0x20
PID=0x20

ID=0x30
PID=0xF0

Frame with ID 0x30 has 2 data

bytes

Publisher = Slave2Sensor

Databyte1 Sensor Status

Databyte2 ValueSensor

Frame with ID 0x20 has 4 data bytes

Publisher = Slave1Motor

Databyte1.bit 0 wiper active

Databyte1.bit 1 park position

Databyte2.bit 0...7 CycleCounter LSB

Databyte3.bit 0...7 CycleCounter MSB

LDF definition:

MasterECU = master

Slave1Motor = slave (wiper motor)

Frame with ID 0x10 has 4 data bytes

Publisher = MasterECU (master)

Databyte1.bit 0...7 message counter

Databyte2.bit 0 IgnitionOn (Klemme15)

Databyte2.bit 1...3 wiper speed

With the information from an LDF, you can assign all frames that

appear on the bus to your publisher using the PID.

You can also interpret the data regarding the signals it contains…

Slide-19 30.03.2022

LIN Scheduling

The order in which the frames are sent to the LIN bus

is defined in a so-called Schedule Table. One or

more Schedule Table(s) are defined in each LDF.

Each table entry describes a frame by its LDF name

and a delay time, which is the time that is made

available to the frame on the bus.

A Schedule Table is always selected as active

and is executed by the master.

The master places the corresponding frame headers on the bus and the publisher assigned to

this frame places the corresponding data section + checksum on the bus.

Several schedules can help to adapt the communication to certain operating states.

The 3 Schedule Tables in the example above can optimize the acquisition of data from the

engine so that it contains the corresponding frame with different repetition rates.

In TableFast, a motor signal would be updated every 10 ms, while in Standard Table

(Table1), the signal would only be updated every 60 ms.

Only the master can switch the Schedule Table. Thus the master application determines which

frames appear on the bus in which time sequence.

Schedule_tables {

Table1 {MasterCmd delay 20.0000 ms ;

MotorFrame delay 20.0000 ms ;

SensorFrame delay 20.0000 ms ;}

SensorFast {MasterCmd delay 10.0000 ms ;

SensorFrame delay 10.0000 ms ;

MotorFrame delay 10.0000 ms ;

SensorFrame delay 10.0000 ms ;}

MotorFast {MotorFrame delay 10.0000 ms ;}

}

Slide-20 30.03.2022

LIN Frame Typen

Auf dem LIN Bus gibt es die folgenden Frame Typen:

In der Beispiel LDF haben wir die Unconditional Frames gesehen. Diese haben genau einen Publisher und

erscheinen dann auf dem Bus, wenn sie gemäß dem aktuell laufenden Schedule wieder dran sind.

Unconditional frame (UCF) The data always comes from the same node (Publisher) and are transmitted with a

constant time grid (Deterministic timing).

Event triggered frame (ETF) A kind of alias FrameId, which combines several Slave UCF's to an own FrameId.

If there is such an ETF in the schedule, only one node with changed data will put it

on the bus. This saves bandwidth - but with the disadvantage of possible collisions.

Due to the collision resolution, the bus timing is no longer deterministic.

Sporadic frames (SF) This is actually more a schedule entry type than a frame type, because this SF

combines several UCF's, which all have the master as publisher, in one schedule

entry. The master then decides which frame to actually send, depending on which

frame has new data

Diagnostic frames A pair of MasterRequest (0x3C) and SlaveResponse (0x3D) frames. Used to send

information that is not described in the LDF. No static signal mapping as with UCF,

ETF and SF.

Slide-21 30.03.2022

Frame type Event triggered Frame

Event triggered Frames (ETF)

ETF's were introduced to save bus bandwidth.

Example: 4 slave nodes in the doors detect the states of

the window lift buttons.

Each node has a frame definition (unconditional UCF) to publish its key

state, and it also has a second event triggered frame definition (ETF) to

publish the same frame data via another FrameId.

With UCF, the slave always sends the data.

With ETF, the slave only sends data if there is changed data.

In addition, the slave places the PID of the associated UCF in the first data

byte.

UCF / ETF have identical signal mappings, whereby in both frames the

first byte is not occupied with a signal, but is always filled with the PID of

the UCF.

So there are 2 possibilities to query the key states.

Via UCF frames, always works, but needs 4 frames.

Via ETF frame - this has then 3 answer variants:

No slave replies,

one slave replies or

several replies (collision).

ETF's are therefore slave frames with several possible publishers.

Master
LIN

Frame Id’s given as PID in Hex

Slave1

PID DB0 DB1

UCF 11 11 status

ETF 50 11 status

Slave2

PID DB0 DB1

UCF 92 92 status

ETF 50 92 status

Slave3

PID DB0 DB1

UCF D3 D3 status

ETF 50 D3 status

Slave4

PID DB0 DB1

UCF 14 14 status

ETF 50 14 status

Slide-22 30.03.2022

Frame type Event triggered Frame

The advantage of the larger bus

bandwidth is bought with the possible

collisions that can occur with ETF's if

more than 1 node has new data for the

same ETF.

The master recognizes such a collision

by an invalid checksum.

In Lin 1.3/2.0 collision resolution

without own collision table is defined.

Here the master will now fill the running

schedule, the ETF slot, with the UTF ID's

one after the other until it has queried

all publishers possible for this ETF.

After that the master uses the ETF in this

schedule slot again.

No

Answer

1 Answer

Collision

Switching

to UCF

frames in

ETF slot

Slide-23 30.03.2022

Frame type Event triggered Frame

With the LIN specification V.2.1 an additional

mechanism for collision resolution was

introduced - the Collision Schedule Table.

This Schedule Table can be assigned to the

ETF definition in the LDF.

After detecting a collision, the master switches

directly to the assigned Collision Schedule

Table.

Typically, all UCF's of the ETF are listed there

one after the other.

This means that the master can query the data

of all nodes potentially involved in a collision

much faster after a collision.

A possible disadvantage of this new method

might be that the Collision Schedule does not

provide a completely deterministic timing of

the original schedule anymore, because the

Collision Schedule is inserted additionally!

1 Answer

Collision

triggers

switch to

Collision

Schedule

Table

No

Answer

Slide-24 30.03.2022

Frame type Event triggered Frame

This is how the LDF sections for the

Event Triggered Frames look like.

Frames are defined as UCF’s.

There the first 8 bits are not mapped

with signals.

The Event Triggered Frame Definition

combines several UCF's under one not

yet used frame ID.

The optional specification of a

Schedule Table name identifies it as a

collision table for these Event

Triggered Frames.

Slide-25 30.03.2022

Frame type sporadic Frames

The purpose of the sporadic frames is to build some dynamic

behaviour into the deterministic and real-time schedules without

losing the determinism in the rest of the schedule.

A sporadic frame group shares the same frame slot. When it is ready

for transmission, it first checks whether there has been a signal

update. This results in 3 scenarios:

1. No signal has changed:

- no frame is sent and the slot remains empty.

2. One signal has changed:

- corresponding frame is sent

3. More than one signal has changed:

- The frame with the highest priority is sent first. The other frames are

not lost and are sent according to the order of prioritisation with each call

of the sporadic frame slot.

The prioritisation of the frames results from the order in which the frames are

defined in the LDF.

Slide-26 30.03.2022

LIN diagnostic frames 0x3C/0x3D

0x3C MasterRequest:

Request Data define the node

and the requested action.

0x3D SlaveResponse:

Data generated by the addressed

slave; content depends on request

Master Request and Slave Response have special properties

• They are always 8 bytes long and always use the Classic Checksum.

• No static mapping of frame data to signals; frame(s) are containers for transporting generic

data.

• Request and response data can consist of more than 8 data bytes. For example, the 24 bytes

of 3 consecutive slave responses can form the response data. You then need a rule for

interpreting the data. This method is also used for the DTL (Diagnostic Transport Layer).

Break Sync Identifier Databyte1 Databyte2 Databyte3 Databyte4 Databyte5 Databyte6 Databyte7 Databyte8 CheckSum

ID=0x3C
MasterRequest

ID=0x3D
SlaveResponse

Slide-27 30.03.2022

The MasterRequest - SlaveResponse mechanism can be used to transmit a wide variety of data

because it is a universal transport mechanism.

A main application is the diagnosis and End of Line (EOL) configuration of nodes.

In the field there is a whole range of different protocols, depending on the vehicle and ECU

manufacturer.

• A lot of proprietary diagnostics or EOL protocols

• DTL based protocols (Diagnostic Transport Layer)

Other protocols are typically based on the DTL layer:

• Standard LIN Diagnostics

• UDS (Unified Diagnostic Services) (ISO 14229-1:2013)

These protocols are not part of the LDF definition.

Only the two frames 0x3C (MasterRequest) and SlaveResponse (0x3D), which serve as

transport containers for the actual protocol data, are defined in the LDF.

More details about the Diagnostic Frames and related protocols will be discussed in the 2nd

part of the LIN Workshop.

LIN Protokolle mit Diagnoseframes

Slide-28 30.03.2022

Currently, the use of an additional security/safety feature for LIN frames can be observed with an

increasing tendency.

It is an 8 bit CRC, which is formed by a certain block of data (e.g. Data2..Data7) and then also placed

in the data section (e.g. in Byte Data1).

In addition to numerous proprietary implementations, a standard according to the Autosar E2E

Specification is currently establishing itself, whereby there are several profiles here. However, first

implementations deviating from the standard have already been viewed (e.g. BMW).

In contrast to the LIN Checksum calculation, which is disclosed in the LIN specification, the special

parameters for these InData CRC's are usually only available against NDA (non disclosure agreement)

from the manufacturer.

The CRC not only ensures transmission security, but is also a security feature because it can be defined

in such a way that certain functions of a system can only be accessed by authorized remote peers.

All CRC Autosar implementations share an additional 4 bit counter in the data. This counter is

incremented every time a frame is sent.

LIN frame security – In data CRC (optional)

Slide-29 30.03.2022

Example of a CRC generation with a CRC

data block starting at frame byte DB3.

The 4 bit counter lies in the low nibble of

the first byte of the CRC data block.

Profile type (1A, 1B, 1C) and counter value

determine which 1 or 2 bytes of the 16 bit

data ID precede the real frame data to

form a virtual data block of 5 or 6 bytes.

The CRC is then formed by this virtual

data block and placed in front of the data

block in the frame.

LIN frame security – Autosar E2E Profile1

Slide-30 30.03.2022

Example of a CRC generation with a CRC

data block starting from frame byte DB3

to Autosar Profile 2. The 4 bit counter is

located in the low nibble of the first byte

of the CRC data block.

The value of the 4 bit counter selects one

of 16 given 8 bit data ID values.

This value is then appended to the real 4

byte CRC block so that the total CRC is

formed over a 5 byte block.

In contrast to profile 1, the counter here

runs from 0...15 (with profile 1 0...14).

LIN frame security – Autosar E2E Profile 2

Slide-31 30.03.2022

The definition of the parameters for a particular Indata CRC's definition is not part of the LDF

specification.

In practice, there are different ways of documenting the CRC parameter specifications in a

concrete project.

Sometimes they are stored as comments in an LDF file.

Or they are given in a description of the signals and frames (message catalog) of a vehicle

manufacturer (PDF/HTML file).More recent description formats for bus systems such as Fibex

(Asam) or ARXML (Autosar) already contain syntax elements for defining such Indata CRCs.

If necessary, a file in one of these formats can be obtained from the client.

Here one must observe the market further, in order to see what establishes itself here as

mainstream.

With the LINWorks PC software the necessary parameters for the CRC's can be included in a

simulation description.

The LINWorks extension for importing new description formats such as Fibex or ARXML is

planned for the future.

LIN frame security – In data CRC

Slide-32 30.03.2022

How to create a LIN application

Typical LIN application:

A LIN node (slave) and a suitable LDF file are available.

An application is to be implemented in which a simulated

LIN master allows the node to be operated in a certain

way.

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,

EOL (End of Line)

LDF

Slide-33 30.03.2022

How to create a LIN application

However, the information in the LDF is usually not sufficient. The

LDF describes the access and interpretation of the signals, but

the LDF does not describe the functional logic behind these

signals.

Therefore you need an additional signal description which

describes the functional logic of the signals (XLS signal matrix or

other text file).

LDF

Signal

description

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,

EOL (End of Line)

Slide-34 30.03.2022

How to create a LIN application

If the task also requires diagnostic communication, an

additional specification of diagnostic services supported

by the nodes is required (protocol type and services).

Only the two frames 0x3C/0x3D with 8 data bytes each

are defined in the LDF, but not their meaning.

LDF

Specification

Diagnosis

Services

Signal

description

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,

EOL (End of Line)

Slide-35 30.03.2022

Lin Workflow in LINWorks

LDF

SDF

SessionDescriptionFile

Bus simulation based on

LDF data

Implementation of

functional logic through

macro and event

programming

Implementation of

diagnostic services via

protocol feature

SDF is

loaded to

device

Optional hosting system

PC or PLC

USB, Digital IO,

RS-232, LAN

connection via

DLL or ASCII

API

LIN-

Bus

SDF

The linchpin in LINWorks-based

applications

Specification

Diagnosis

Services

Signal

description

Slide-36 30.03.2022

LINWorks components

LDF

LINWorks

LDF-

Editor

LINWorks

Session-

Configurator

Baby-Lin

DLL

LINWorks

SimpleMenu

Own

Applikation

SDF

USB

LDF-Editor:

View LDF

Create LDF

Customize LDF

Session-Configurator:

Which nodes should be simulated?

Which signals are to be displayed?

Macros, events and actions to define

the functional logic

Definition of signal functions

Definition of diagnostic services

Slide-37 30.03.2022

LINWorks SessionConf

Minimal setup:

➢ Import LDF file into Session

Configurator.

➢ Define emulation setup.

Slide-38 30.03.2022

LINWorks SessionConf

Defining the display contents for the PC

software SimpleMenu (optional)

Save as SDF file

=> The first SDF is created!

Slide-39 30.03.2022

LINWorks Simple Menu

Step 1: Open SimpleMenu application

Step 2: Connect with Baby-LIN

Step 4: Start simulation

LIN-Bus running!

Step 3: Load SDF into Baby-LIN

Slide-40 30.03.2022

LINWorks Simple Menu

Start, Stop, Wakeup and Sleep

command

Restart command allows to

start the bus without resetting

the signals to the default

values from the LDF/SDF.

This happens when using the

Start function.

Nodes can be

dynamically

switched on and

off during

simulation.

The screen content can

also be configured

here as a supplement

to the definition from

the SDF.

Switching to

another schedule

Adding a logger to record

bus communication

Slide-41 30.03.2022

SessionConf – Section Properties

Section properties

Here you can enter a name and a

description for the section.

The flag "Store SDF in device persistently"

is important for stand-alone operation.

If it is set, the SDF is automatically stored in

the dataflash of the device during the

download.

If it is not set, the SDF is stored in the RAM of the device and

is then deleted again after a Power-OFF-ON cycle.

Speed[Bit/s]

Here the LIN baud rate is displayed, which was taken over from the LDF, you can

overwrite this baud rate with another value if necessary.

The baud rate must be entered here in a CAN section, since it cannot be taken over from

the DBC and is therefore set to 0 after the DBC import.

Slide-42 30.03.2022

SessionConf – Bus Description

Bus description

This area is used to display all objects taken over from the LDF such as nodes, frames,

signals, schedules, etc.

You can also change some of them here. Frame id's or slot times can be adjusted in

Schedule Tables.

Slide-43 30.03.2022

SessionConf - Emulation Setup

Emulation setup

Here you define which of the

nodes defined in the LDF is to be

simulated by the Baby-LIN.

Depending on which nodes are

connected, you should only select

nodes that are not physically

present.

In our SimpleWiper example we

have not connected any real

nodes, so we simulate all three

nodes.

Set unused bit to 1 checkbox

If not all bits in a frame are occupied with a signal, you can decide here whether these

unoccupied bits are set with a 1 or a 0 during transmission.

In SDF-V2 this option did not exist yet, because unmapped bits were always set to 0.

Slide-44 30.03.2022

Session Conf – Tables

The new SDF feature 'Tables' allows to define data for the

functional logic in tabular form.

1.) Creating a table

2.) Enter a name for the table

3.) Definition of columns

A column can contain text (String) or

numbers (Signed/Unsigned Integer).

For numbers, the size (1...64 bit) can be

defined for memory space optimization.

Format defines the display or input

format for number columns.

Decimal

Hexadecimal

Binary

Here is an example table for defining test

variants for a wiper endurance run.

Column 0 contains the name of the test,

columns 1...3 define specific time specifications

for the individual test variants.

Number 32 => 32

Number 32 => 0x20

Number 32 => 0b100000

Slide-45 30.03.2022

Session Conf – Tables

Here the completed example table with 5 test variants, column 0 contains the name

of the test, columns 1...3 define certain time specifications for the individual test

variants.

Macros contain commands for accessing these table values.

You can implement procedures that differ only in parameter values in a single macro and

read and use the parameters from the corresponding table line, depending on the test

type you have set.

How to access the values is described in the explanation of the macro commands in the

Table section.

The tables occupy much less memory space than virtual signals and are a better

alternative for applications with many identical nodes (ambient lighting, climate

actuators).

Slide-46 30.03.2022

Session Conf – Virtual signals

Virtual signals can be defined in addition to the signals defined in the LDF. These do not

appear on the bus, but can be used in macros and events.

These signals are very useful for implementing functional logic.

They can also be mapped to Protocol Frames (Protocol Feature).

The size of a virtual signal is 1...64 bit adjustable - important when used in the protocol

feature.

Each signal has a default value that is set when the SDF is loaded.

Checkbox Reset on Bus start

Allows to emulate the behavior

of SDF-V2 files.

There all signals (also the virtual

ones) were loaded with the

default values at every bus start.

Check box signed

By default, a signal is always

treated as unsigned.

With this checkbox you can turn

it into a signed signal.

The comment column allows you to enter notes and explanations about the variable.

Slide-47 30.03.2022

Session Conf – Virtual signals

Use case example

Implementation of a cycle counter by using the motor signal parking position.

Each time the signal state changes from 0 to 1, the event increments the virtual

signal AuxCycleCounter.

Slide-48 30.03.2022

SessionConf – System signals as spezial virtual signals

Special virtual signals => system signals

There are virtual signals with reserved names.

If these are used, a virtual signal is created once and

at the same time a certain behavior is associated with

this signal.

This way you have access to timer, input and output

resources and system information.

Depending on the hardware version, there may be a

different number of supported system variables.

All names of system signals start with prefix @@SYS

Often used system variables (timing functions/system information):

@@SYSBUSSTATE gives information about LIN communication:

0 = no bus voltage,

1 = bus voltage, but no schedule is running,

2 = schedule is running and frames are sent

@@SYSTIMER_UP generates an up counter that counts as soon as its value is not equalto 0. The

counter tick is one second.

@@SYSTTIMER_DOWN creates a down counter that counts every second until its value is 0.

@@SYSTIMER_FAST_UP like SYSTIMER_UP or _DOWN, but the timer tick here is 10 ms.

@@SYSTIMER_FAST_DOWN

Slide-49 30.03.2022

SessionConf – Virtual signals system variables

More system signal for I/O control

@@SYSDIGIN1…x

@@SYSDIGOUT1…x

@@SYSPWMOUT1…4

@@SYSPWMPERIOD

@@SYSPWMIN1..2

@@SYSPWMINFULLSCALE

For example, the @@SYSDIGIN1...x and the @@SYSPWMIN1..2 system signal can be combined with

an ONCHANGE event.

So the input value a digital input can be transferred to a LIN bus signal with only one event definition.

To avoid having to remember all the reserved names for the system signals and their notation,

SessionConf provides a system signal wizard in the virtual signal section.

Access to the digital inputs (e.g. Baby-LIN-RM-II or Baby-LIN-RC-II)

Access to digital outputs (e.g. Baby-LIN-RM -II)

Generation of PWM output signals on up to 4 outputs. The signal value between

0 and 100 [%] defines the pulse/pause ratio.

This system signal defines the fundamental frequency for the PWM output. It can

be set between 1 and 500 Hz.

The two inputs DIN7 (@@SYSPWMIN1) and DIN8 (@@SYSPWMIN2) are

supported as PWM inputs (Baby-LIN-RM-II).

This system signal defines the full scale value (corresponding to 100%).

By default, this is set to 200 by the system.

Slide-50 30.03.2022

SessionConf – System variables wizard

Information on the function

of the selected system signal

Easy creation of system signals

with the wizard.

Drop-down selection menu for

restricting the display to the

system signals that are available

for this device type.

Slide-51 30.03.2022

Signal functions - Counter

If the Baby-LIN replaces the LIN bus master, it should generate the frames and signals

exactly as the original control unit in the vehicle does (residual bus simulation).

There are signals in real applications that need special handling, e.g. message counters

that increment their value every time they are sent on the bus, and when they reach their

maximum value, they start at 0 again.

This function can be automated in the SDF via a signal function.

Another example of signal functions are CRC's in the data.

Slide-52 30.03.2022

Signal functions - CRC

Signal Function CRC

With this signal function you can define an Indata checksum or CRC for specific frames according

to various algorithms

➢ Checksum 8 Bit Modulo

➢ CRC-8

➢ CRC-16

➢ XOR

➢ CRC AUTOSAR Profile1/2

The CRC algorithm can be freely configured with initial value, polynomial and XOR value.

For the standard Autosar variants the correct default values are suggested.

adds all bytes belonging to the data block and uses the LSB of the

sum.

forms an 8 bit CRC over the data block according to the specified

parameters

forms a 16 bit CRC via the data block according to the specified

parameters.

links all bytes of the data block via XOR.

forms a CRC according to Autosar specification E2E Profile 1/2 and

other implementations.

Slide-53 30.03.2022

Signal functions – CRC example Checksum

Here the checksum is formed in a frame with a length of 4 bytes (= length of Frame

MasterCmd) over the second to fourth data byte (Param *1 = 1 => block starts with 2nd

data byte, Param *2 = 3 => block length 3, block thus comprises 2nd data byte...4th data

byte) and then stored in the first data byte (Param *3 = 0 => 1st data byte).

The parameters *4 to *7 define an optional prepend and postpend buffer with up to 8 byte

values, which are then prepended or appended to the data of the real frame before the

calculation.

This is used to implement special cases in which, for example, the FrameId is to be

included in the CRC calculation.

Slide-54 30.03.2022

Signal functions – CRC example Autosar

Here an Autosar CRC according to profile 2 is formed in a frame with 4 bytes length

(= length of Frame MasterCmd) over the second to fourth data byte. Here too, the

data block over which the CRC is formed comprises the 2nd data byte to the 4th data

byte.

For Autosar CRC there is then a whole series of parameters.

Slide-55 30.03.2022

Session Conf - Macros

Macros are used to combine multiple operations into a sequence.

Macros can be started by events or, with SDF-V3, can also be called from other macros in the

sense of a Goto or Gosub. The DLL-API calls a macro with the macro_execute command.

Macros play an important role in the implementation of functional logic in an SDF.

Slide-56 30.03.2022

Session Conf - Macros

First you have to create a new macro,

either with the

context menu (right-click)

or with the plus button.

Then you add commands to this macro.

The command Start Bus is always

inserted; it is then changed to the

desired command.

There are several

categories from which you

can select macro

commands, such as

signals, bus, LIN etc..

Slide-57 30.03.2022

Session Conf - Macros

Each macro command consists of several parts.

Command

The operation to be performed by the Macro command.

Condition

Here you can define a condition that must be fulfilled to actually

execute the command.

Comment

A comment that allows you to make notes about the macro command,

e.g. what to do with it on the bus.

Label

This marking of a macro command line can be used when selecting a

jump command.

With the latest LINWorks

version and Baby-LIN

firmware every macro

command can be disabled.

Then it will be treated as if it

were not present.

Slide-58 30.03.2022

Macro Local signals/Local variables

All Macro Commands can use signals from the LDF (bus signals)

and signals from the Virtual Signal section (in the Command or in

the Condition).

In addition, there is another group of signals that only exists in the

context of a macro: the local signals.

Each macro always provides 13 local signals:

_LocalVariable1, _LocalVariable2, ..., _LocalVariable10,

_Failure, _ResultLastMacroCommand, _Return

The last 3 provide a mechanism to return values to a call context

(_Return, _Failure) or to check the result of a previous macro

command. (_ResultLastMacroCommand).

The signals _LocalVariableX can be used e.g. as temporary

variables in a macro.

E.g. to save intermediate results when performing a calculation with

several calculation steps.

Slide-59 30.03.2022

Macro Parameter Passing

A macro can have up to

10 parameters when called.

In the macro definition these

parameters can be given names, which are then

displayed in brackets behind the macro name on the

left side of the menu tree.

The parameters end up in the signals

_LocalVariable1...10 of the called macro.

If no or less than 10 parameters are passed, the

remaining _LocalVariableX signals get the

value 0.

To return the result of a macro to the caller, the local

signals _Return and _Failure are available.

Slide-60 30.03.2022

Macro Result return

The local signals _Failure and _Return are used

to return results to a call context.

Call by other macro (Gosub)

The calling macro can use the _LastMacroResult

Command variable to access the return value of

the called macro which it has stored in

the _Return command.

If the signal failure in the called macro was set to

a value other than 0, this value is also automatically

transferred to the _Failure signal of the calling

macro.

Call by MacroExec Cmd for Baby-LIN-MB-II

A macro called by the Ascii API returns the value of

the _Return variable as a positive result.

If the _Failure variable is set in the executed macro,

the return value is @50000+<_Failure>.

Attention: Result return only with blocking Macro call.

Important note: The value of _ResultLastMacroCommand is only valid in the Macro command line directly

after the Gosub command, because this signal always contains the result of the previous command.

The _Failure variable has a different behavior. It is automatically transferred to the calling macro when

setting in the called macro when returning if it has a value unequal to 0.

Slide-61 30.03.2022

Macro Signal commands

Macro command Description

Set signal Assign a constant value to a signal.

Add signal Add a constant to a signal value (constant can also be negative).

Set from signal Set a signal with the value of another signal.

Set bit Set or delete a specific bit of a signal.

Set Minimum Assignment of the smallest value (corresponding to bit length and

signed property).

Set Maximum Assignment of the largest value (corresponding to bit length and

signed property).

Set using

mathematical

operation

Define the value of a signal by a mathematical operation between 2

signals or a signal and a constant. (+, -, *, /, >>, <<, XOR, AND,

OR)

Slide-62 30.03.2022

Macro Bus commands

Macro command Description

Start Resets all bus signals to the LDF default values.

Stop Stops the Lin Bus communication.

Restart Starts the LIN bus, but receives all signal values. No reset to LDF default

values.

Sleep Sends a Sleep Frame to the bus and stops Schedule.

Wakeup Sends a wakeup event and starts Schedule.

Set speed Sets the baud rate of the LIN bus to the entered value.

Freeze signals Blocks all subsequent signal changes until an unfreeze occurs. Allows

atomic signal changes in a frame.

Unfreeze signals Applies all accumulated signal changes since the last freeze.

Slide-63 30.03.2022

Macro Bus commands

Macro command Description

Inject frame Allows to send any frame without LDF definition.

With the latest LINWorks/Firmware version a blocking execution is also

supported.

Inject SDF frame New: Allows to send an SDF frame (LDF/DBC) without a schedule; the bus must

be started and the frame must be sent independently from the current schedule

and the bus signals must be updated accordingly (with the ReadFrame).

Set frame mode Deactivate and activate LIN frames in a schedule or toggle between no, single

shot or periodic transmission (CAN)

Execute service Execution of a Protocol Service defined in the Protocol section.

Request/Response Frame pairs can be defined and virtual signals can be mapped

into request and response data.

Slide-64 30.03.2022

Macro LIN-Bus commands

Macro command Description

Select schedule Schedule switching optionally,

Schedule mode can also be transferred.

Set schedule mode Permanently assign an execution mode to a schedule table:

• Cyclic

• Single run

• Exit on complete

Force checksum Force a certain checksum type:

Automatic, V1(Classic Checksum), V2 (Enhanced Checksum)

Send Master Request Send a Master Request (Frame ID 3C), a Schedule with suitable 0x3C Frame

must run! Due to Inject and Execute Service Commands rather obsolete.

Send DTL Request Deactivated: If the protocol feature has become unnecessary, it will disappear in

one of the next updates.

Slide-65 30.03.2022

Macro Flow Control commands

Macro command Description

Delay Delays macro execution by the specified time (ms).

Jump Branches to another command in the same macro.

Used for loops or branches, often in conjunction with a condition.

Event Deactivates and activates events.

Goto macro Branches to another macro; the remaining commands of the running macros are

no longer executed.

Gosub macro Call another macro. The running macro is continued after the Gosub command,

if the called macro was terminated.

The called macro can return a result (_Return/_Failure).

Exit Ends the execution of the current macro. If the macro was called by another

command via Gosub command, control is returned to the calling macro.

Slide-66 30.03.2022

Macro Macro commands

Macro command Description

Start Starts another macro. This runs independently and parallel to the current

macro.

Stop Stops the processing of another macro.

Macroselection Starts a macro from a Macro Selection (group of macros) There are several

options for selecting the

macro from the Selection group.

Print Output of texts, signal values on the debug channel in the Simple Menu.

Very helpful for troubleshooting macro programming.

Further information and output to additional channels in the future.

Slide-67 30.03.2022

Macro Exception commands

Macro command Description

Try Block Defines the beginning or end of a Try block.

Catch Block Defines the beginning or end of a Catch block.

Throw Triggers an exception with the given exception code anywhere (in the try

block or outside the try block).

Ignore Allows you to ignore certain exceptions for the following command.

For example, if an Execute Service error is the expected situation due to a

missing response.

Exception Record When an exception is raised by __ResultLastMacroCommand != 0 in a try

block or by a throw command, the exception code, macro number and

macro command line are stored in an ExceptionRecord.

With this command you can access these values.

Slide-68 30.03.2022

Macro Table commands

Macro command Description

Get Value Loads the value of a Table Cell (Table : Row : Col) into a signal.The table,

column and row selection can be defined using constants or signal references.

Store Value Stores a signal value in a Table Cell (Table : Row : Col) Table, column and row

selection as constant or signal reference.

Table Count Sets the specified signal with the number of tables in this SDF section.

Row Count Sets the specified signal with the number of rows in the requested table.

This allows you to iterate over all lines of a table in a macro, for example.

Column Count Sets the specified signal with the number of columns in the requested table.

If there are tables in the SDF, the following

commands allow access.

The Get Value and Store Value operations are

currently only supported on the device for cells of

type Number.

The string values can already be read out via DLL.

Slide-69 30.03.2022

Macro Table example

Use the TestType table in a macro.

The parameters for the SubMacros

RunSpeed1, RunSpeed2 and Pause are read

from the appropriate table row for the

selected test type (Signal TestSelection).

Slide-70 30.03.2022

SessionConf – Macro selection

Macro selection

A macro selection defines a group of macros

from which a macro can be selected for

execution.

Example: A macro selection to choose

between the macros RunSpeed1, RunSpeed2

and StopMotor.

The selection can then be made using a GUI

Element, Event Action or Macro Command

(SDF-V3).

Slide-71 30.03.2022

SessionConf – Device specific options

Device specific options

So far this section is only relevant for HARP users. Here you can define the signals

and key labels for the HARP Keyboard Menu.

There are also setting options for custom variants (e.g. WDTS).

Slide-72 30.03.2022

SessionConf – Device section

The Device Section (only in SDF-V3 files) allows to store the Target Configuration directly

in the SDF file.

It is still possible to configure the target device in the SimpleMenu, as it was only possible

in LINWorks V1.x.

If a SDF-V3 file contains a target configuration it is automatically transferred to the device

during the download.

Previous problems with forgotten Target Configuration at the customer are now a thing of

the past.

Slide-73 30.03.2022

Baby-LIN DLL

Baby-Lin

DLL

SDF

C#/C/C++

application

Visual Basic

application

Labview

Python

etc.

The provided DLL allows to address the

LIN bus from own PC applications.

This can be implemented in all

programming environments that can

integrate C-DLLs.

Program examples for C/C++, C#, VB-

Net, VB6, Labview and Python are

available.

A special API for the Diagnostic

Transport Layer (DTL) supports the

implementation of higher protocols.

Slide-74 30.03.2022

Baby-LIN DLL

Baby-LIN DLL provides a whole range of API calls

The most important and most widely used are:

BLC_open (const char * port);

opens a connection to a Baby-LIN device

BLC_getChannelHandle (BL_HANDLE handle, int channelid);

gets a channel handle to a certain channel of a device (LIN/CAN, etc.)

BLC_loadSDF (BL_HANDLE handle, const char* filename, int download);

loads an SDF into the DLL and into the Baby-LIN (download = 1)

BLC_sendCommand (BL_HANDLE handle, const char* command);

sends an API command to the baby-LIN

BLC_close (BL_HANDLE handle);

closes a Baby-LIN connection

The list of all API commands can be found in the BabyLINDLL.chm help file.

Slide-75 30.03.2022

Baby-LIN DLL

There are a large number of commands that can be issued using the API call

BLC_sendCommand(...).

The most important are:

start

schedule

stop

setsig

dissignal

disframe

macro_exec

inject

The list of all commands can be found in the BabyLINDLL.chm help file

Starts the bus communication; for LIN with optional Schedule index

Switch to another Schedule Table (LIN channel)

Stops the bus communication on the given channel.

Setting a signal value

Activation of the signal reporting for the specified signal.

Activation of frame reporting for the specified frame

Starts the execution of a macro stored in the SDF

Allows the sending of frames independent of running schedules

Slide-76 30.03.2022

➢ The Baby-LIN DLL is a native library with C-interface.

➢ For an easy integration with .NET languages like C# and VisualBasic.NET additional

wrappers are included.

➢ Also a Python and a VisualBasic 6 wrapper are available.

➢ For LabView there is an example VI collection.

➢ The Baby-LIN library is available as DLL under Windows and as Shared Library for PC-

based and ARM-based (e.g. RaspberryPi) Linux systems.

➢ By accessing all signals, frames, macros etc. defined in the SDF, the distribution of tasks

between your own application and the Baby-LIN device can be freely defined to a large

extent.

➢ In addition to the SDF-based API, the DLL also offers a purely frame-based API (Monitor

API). Contrary to its name, this API also supports writing operations such as sending

frames.

➢ The Monitor API is also used for the new UDS protocol support..

Baby-LIN DLL

Slide-77 30.03.2022

LIN diagnostic frames 0x3C/0x3C

0x3C MasterRequest:

Request Data define the node

and the requested action.

0x3D SlaveResponse:

Data generated by the addressed

slave; content depends on request

Master Request and Slave Response have special properties

• They are always 8 bytes long and always use the Classic Checksum.

• No static mapping of frame data to signals; frame(s) are containers for transporting generic

data.

• Request and response data can consist of more than 8 data bytes. For example, the 24 bytes

of 3 consecutive slave responses can form the response data. You then need a rule for

interpreting the data. This method is also used for the DTL (Diagnostic Transport Layer).

Break Sync Identifier Databyte1 Databyte2 Databyte3 Databyte4 Databyte5 Databyte6 Databyte7 Databyte8 CheckSum

ID=0x3C
MasterRequest

ID=0x3D
SlaveResponse

Slide-78 30.03.2022

LIN Diagnostic Frames 0x3C/0x3D

Since a MasterRequest is received by all Slave nodes, but only one Slave is to respond to the

following SlaveResponse Frame, the data in the MasterRequest must contain a kind of addressing

so that the Slave can recognize that it is meant.

The connected nodes must then have different addresses according to this addressing method.

In addition, the data of the request must describe which action the master wants to execute with

the addressed slave.

In order to reduce the effort for specification and implementation of these mechanisms in a LIN

application, a general definition was created that is part of the LIN specification.

The protocol called DTL (DiagnosticTransportLayer) also allows larger data packets with more

than 8 bytes (maximum frame size for LIN) to be transported.

The use of the Diagnostic Transport Layer (DTL) is also referred to as Cooked Mode.

However, there are still applications today that operate diagnostics without DTL; these are usually

manufacturer-specific, which is referred to as raw mode.

Slide-79 30.03.2022

Diagnostic transport layer DTL in detail I

Diagnostic Cooked mode

➢ MasterRequest and SlaveResponse Frames are the transport containers.

➢ Data Objects with up to 4095 bytes can be transmitted

➢ NAD and PCI are 2 elements that occur in each frame and provide information about

the frame and its destination or origin.

Slide-80 30.03.2022

Diagnostic transport layer DTL in detail II

Slide-81 30.03.2022

Special case MasterRequest: Sleep

ID DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

0x3C 0x00 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

This is the Sleep Command Frame, which can be sent by the master.

It requests all connected nodes to go into sleep mode.

Usually the sleep mode in the slave is also linked to a power saving mode, depending on

the slave implementation.

After sending this frame, the master stops sending further frames.

To wake up the bus again, the master sends a wakeup event and continues with the

scheduling (start, restart, wakeup).It is also permissible for a slave to wake up a sleeping

bus with a wakeup event.

This is also the only situation on the LIN bus where a slave can show activity on the bus

without being requested to do so by the master.

Even in systems that use DTL mode, a certain MasterRequest Frame can occur that

differs from the DTL Frame Layout Schema.

Slide-82 30.03.2022

Standard Diagnostic Services

In the LIN specifications V.2.0 and V.2.1 some standard diagnostic

services are defined.

This standard diagnostic service is based on

the DTL (Diagnostic Transport Layer).

Each service is identified by a service ID in the

1. payload byte, depending on the service

further parameters follow

The table shows the available services

Only the services 0xB2 and 0xB7 must always

be supported by a slave, the others are

optional.

The service 0xB1 Assign Frame Identifier was

only available in LIN V.2.0; it was replaced in

LIN V.2.1 by the service 0xB7.

A master that controls nodes with LIN V.2.0 and LIN V.2.1 must

support both services. In fact, many LIN slave nodes support both

services alternatively.

source: LIN specification V.2.2.

Slide-83 30.03.2022

DTL standard payload layout

As a rule, a service consists of a request and a response,

whereby there can be a positive and a negative response.

PAYLOAD Request

DB0 DB1 DB2 DB3 DB4 DB5 DB6 …… DBn

SID P1 P2 P3 P4 …. …. …. ….

PAYLOAD Positive Response

DB0 DB1 DB2 DB3 DB4 DB5 DB6 …… DBn

RSID [P1] [P2] [P3] [P4] …. …. …. …..

DTL-Request Service

Id SID always in 1.

byte of payload

On positive response:

SID | 0x40 = RSID

PAYLOAD Negative Response

DB0 DB1 DB2 DB3 DB4 DB5 DB6 …… DBn

0x7F SID Error

code

Not

used

Not

used

Not

used

Not

used

…. Not

used

On negative response:

1. Byte 0x7F

2. Byte SID

3. Byte ErrorCode

Slide-84 30.03.2022

Lin product identification

According to LIN specification, each LINV.2x node has a unique product identification.

The product identification consists of 3 values:

Supplier Id 16 bit number (most significant bit always 0), the Supplier Id is assigned to the

manufacturer by the CIA (formerly LIN Consortium).

Function Id 16 bit Manufacturer-specific number that identifies a specific product. Products that

differ in LIN communication or in their properties at the interfaces should have

different Function Ids.

Variant 8 bit number, which should always be changed if the node does not experience

functional changes.

Supplier Id and Function Id are required in some diagnostic services as parameters in the

MasterRequest.

Wildcards have been defined so that these services can

also be executed without knowledge of this ID.

Every node should support this wildcard, in practice this is

not always the case.

Wildcards usually only work with a single connected slave.

However, there are exceptions, e.g. auto-addressing, but no

response is evaluated.

Wildcards

NAD 0x7F

Supplier Id 0x7FFF

Function Id 0xFFFF

Slide-85 30.03.2022

Diagnostic Services Read data by ID

source: LIN specification V.2.2.

Read data by Identifier Service

The layout of the response data depends on the requested identifier:

Only identifier 0 must be

supported by each LIN node.

Slide-86 30.03.2022

Diagnostic Services Assign Nad

Assign NAD Service

source: LIN specification V.2.2.

If only one slave is connected, you can also use

the wildcard NAD 0x7F.

Not all slaves allow the reconfiguration of the

NAD (e.g. VW-Led's from the exercises).

Wildcards

NAD 0x7F

Supplier Id 0x7FFF

Function Id 0xFFFF

A positive answer then looks like this :

Slide-87 30.03.2022

Diagnostic Services Assign FrameId

Service Assign Frame-Id

This service was deleted in LIN Spec V.2.1, but you often have to implement it in a master if you

have LIN V.2.0 slaves connected there.

It is possible to use the wildcards for Supplier Id and NAD, but only if only one participant is

connected.

The Message Id is a 16 bit identifier that uniquely references each frame of a node.

This Message Id / Frame assignment can be found in the node attributes of an LDF file.

Attention: the Protected Id is used in this request.

source: LIN specification V.2.2.

If the service was successful, the slave gives a positive response as far as the

master requests it by sending a slave response header.

RSID = 0xB1 | 0x40 = 0xF1

When using the wildcard NAD, the response is the real NAD.

Slide-88 30.03.2022

Diagnostic Services Assign FrameId II

The Message Id used in the Assign Frame Id Service is a 16 bit number.

Each configurable frame of a LIN node is listed in the Configurable Frames section of the

node attributes in the LDF. There the corresponding Message Id is also assigned to each

frame. The message id is only unique within a node, but nodes of the same type have the

same message id for the same frame.

source: LIN specification V.2.2.

Slide-89 30.03.2022

Diagnostic Services Assign FrameId range

Service Assign FrameId Range

This command was introduced in LIN V2.1 and replaces the obsolete

Service Assign frame Id.

With this service you can assign new ID's to up to 4 frames.

The Start Index indicates to which frame the first PID in the list of up to

4 PID's belongs.

The order in the list is the same as the frames listed in the Node

Attribute Section of the LDF.

If a frame is not to be supported at all, enter the value 0; if a frame is

not to be reconfigured, but to retain the previous value, enter the

value 0xff.

Unused PID's in the list are also set to 0xff.

source: LIN specification V.2.2.

Positive response

Slide-90 30.03.2022

Diagnostic Service Assign FrameId range (0xB7)

The slave node has 6 configurable frames, as shown in the LDF

extract on the right. To assign all 6 FrameId‘s 2 B7 Services

must be excuted.

Example : Configuration of 6 PID‘s

The positive response for both service would look like this:

Result of frameId assignment:

POWER_STATUS ID: 0x20 PID: 0x20

CTR_FAN_2_LIN ID: 0x21 PID: 0x61

ST_FAN_2_LIN ID: 0x22 PID: 0xE2

FAN_SPEED1 ID: 0x23 PID: 0xA3

FAN_SPEED2: ID: 0x24 PID: 0x64

FAN_CURRENT_SPEED: ID: 0x25 PID: 0x25

Slide-91 30.03.2022

Diagnostic Services Data Dump

Data Dump Service

This service can be used by the Manufacturers node to implement product-

specific configuration services, for example, for the EOL.

So some actuator manufacturers use this service to configure with direction,

EmergencyRun, EmergencyRunPosition, etc.

source: LIN specification V.2.2.

Positive Response

RSID corresponds again to the rules of the DTL (0xB4 | 0x40 = 0xF4); all further

data in the payload are defined manufacturer specifically.

Slide-92 30.03.2022

LIN Diagnostic Service Save Configuration (0xB6)

Save Configuration (0xB6)

This service can be used by the node manufacturer to persistently save changes to the node

configuration (NAD, FrameId, etc.) via the Data Dump Service..

However, this is not uniformly regulated because some nodes immediately write to a non-volatile

memory when the corresponding change service is performed. Other nodes initially only make the

change temporarily in RAM and then need this slave configuration service to store the values in non-

volatile memory.

Save configuration requeste:

Upon successful execution of the service and correct NAD, the slave should respond

with the following frame. It should be noted that there is no wait for the configuration to

be saved

Slide-93 30.03.2022

Raw mode interactive Simple Menu

The Send Masterrequest function in the

Simple Menu can be used to quickly and

interactively check whether a node supports a

particular diagnostic service.

This Interactive MasterRequest mask only

works if a Diagnosis Schedule has been

started.

This must contain MasterRequest and

SlaveResponse Frames.

Any diagnostic frames can be defined in this

mask, even those that are not DTL compliant.

The slave response can also be displayed in

this mask.

Slide-94 30.03.2022

Raw mode interactive in Simple Menu

For this function a Schedule with MasterRequest and SlaveResponse Frames must

be activated.

After entering the request data and setting RequestCount to 1, we see the answer

when we press Send.

The actuator reports the

values

NAD 0x13

Supplier Id 0x0076

Function Id 0x0001

Variant 0x01

Slide-95 30.03.2022

Cooked mode interactive Simple Menu

There is also an interactive

mask for the Cooked Mode in

the SimpleMenu.

You also have to make sure

that a schedule with

MasterRequest and

SlaveResponseFrames is

running.

With the frame monitor you

can also see the raw data on

the bus.

Slide-96 30.03.2022

Raw mode MacroCommand MasterReq

Diag Schedule

necessary, therefore

start bus first

Slide-97 30.03.2022

Raw mode MacroCommand Inject

Alternativ Inject Command

Slide-98 30.03.2022

Raw mode MacroCommand Inject

When sending a diagnostic request via Macro Command Inject you get the

identical data.

In the Frame Monitor, Inject Frames are marked separately.

Slide-99 30.03.2022

SDF Feature Protocol Service

New SDF Feature Protocols

1. add

protocol here

2. setting basic protocol properties

3. add service with

request and optional

response here

4. service details with constant data

and/or signal mappings Only virtual

signals can be mapped in a protocol

service!

Slide-100 30.03.2022

Raw mode MacroCommand Execute service

Create signals to record the response data

Define Service Request with Constant

Payload

Define Service Response with

Signal Assignments

Slide-101 30.03.2022

Raw mode MacroCommand Execute service

Macro to run service GUI elements to display

response data

Slide-102 30.03.2022

Cooked mode MacroCommand Execute service

We're now drawing up a protocol as

DTL. (Copy and change the raw

protocol)

For DTL we need a virtual signal

@@SYS_SERVICE_REQUEST_NAD

We set its default value to 0x7f (NAD

Wildcard)

Slide-103 30.03.2022

Cooked mode MacroCommand Execute service II

Macro to run service GUI elements to

display response data

Slide-104 30.03.2022

The use of protocol services offers many advantages, so that the older Macro commands

SendMasterRequest or Inject will not be used anymore.

➢ Macro execution is synchronous to bus communication

If a command "Execute Protocol Service" is finished, the frames were also on the bus.

➢ Any problems that occur when sending / receiving protocol frames are detected and

reported back.

➢ Support of DTL/ISO TP Multiframe messages (Request and Response).

➢ With DTL/ISO-TP the negative return codes are evaluated and returned.

➢ A temporary NCR 0x78 is also handled correctly and the response request is repeated

until a final positive or negative response is received.

➢ Return value of the Macro commands Execute Protocol Service allows error handling in

the SDF.

➢ Access to the return value via the local signal __ResultLastMacroCommand.

➢ The protocol mechanism is not limited to diagnostic frames, it also allows the creation of

applications with dynamic schedules, because then the frame dispatch is triggered by

macro and not by schedule.

➢ The FrameId of a protocol service can also be defined via a signal.

Advantages SDF Protocol Services

Slide-105 30.03.2022

Here is a list of the most common error codes that are available as

__ResultLastMacroCommand after an Execute Protocol Service Command.

A complete list can be found in the respective user manual of the product.

Result Codes command Execute Protocol Services

Return

code

Description (firmware version >= V.6.16)

0 The service was performed successfully

2 Service not successful, due to lack of LIN bus voltage

3 One slave did not respond in the required time

10 Too many services have been started (possibly from macros running in parallel).

14 The length of the slave response does not match the SDF protocol definition

20 Bus was not yet started

21 Bus level unexpected low

47 Bus level unexpected high

256…511 With DTL/ISO-TP the slave can give a negative response. This contains an 8 bit error code. This

error code is returned here with an offset of 0x100.

e.g. 0x12 => 0x112 => 274

Slide-106 30.03.2022

Result Codes command Execute Protocol Services

In LIN Standard Diagnostics and UDS the same Negative Response Codes are usually applied in

the negative response. (0x7F <SID> <ErrorCode=NRC>

Here is a list of the most important NCR's.

NRC Meaning of NRC

0x10 generalReject

0x11 serviceNotSupported

0x12 subFunctionNotSupported

0x13 incorrectMessageLengthOrInvalidFormat

0x14 responseTooLong

0x21 busyRepeatRequest

0x22 conditionsNotCorrect

0x31 requestOutOfRange

0x33 securityAccessDenied

0x35 invalidKey

Slide-107 30.03.2022

Diagnostic Frames-Auto-addressing

Auto addressing is needed if you have a LIN bus with several similar slaves, as is often

the case with air-conditioning actuators or ambient LEDs.

Auto addressing uses different methods to make the identical slaves individually

addressable for the master by a certain procedure, in order to be able to assign them a

specific NAD and FrameId.

The 2 most common methods are the daisy chain and the bus shunt method.

Both methods use a bus wiring with a LIN-IN and LIN-Out pin at each slave.

Slide-108 30.03.2022

Diagnostic Frames-Auto-addressing

SNPD Subfunction
ID

All slaves go into the un-configured state. 0x01

Sets NAD of the next slave in the chain 0x02

All slaves save new NAD persistent 0x03

End of Auto Addressing for all Slaves.

Slaves go into normal operation and use new

NAD

0x04

SNPD Method ID

Daisy Chain 0x01

Bus Shunt 0x02/0xF1

In practice, the bus shunt method is often
identified by 0xF1 instead of 0x02!

Slide-109 30.03.2022

Nad

0x02

Auto Addressing Daisy Chain Method

Daisy chain is based on a switch integrated

in the slave between the LIN-IN and the

LIN-Out pin.

Cmd 0x01 0xff opens the switch for all

slaves.

Thus only Slav1 is connected directly to the

master.CMD 0x02 0x01 gives this slave a

new NAD. Slave closes its switch and now

waits for the 0x04 0xff command.

Next 0x02 0x02 CMD now goes to the 2nd

slave which is now connected and so on.

Daisy chain mode: The slaves receive the

distributed NAD's in the order from the

next to the most distant slave.

Nad

0x01

Nad

0x03

Nad

0x04

Slide-110 30.03.2022

Nad

0x02

Auto Addressing Bus Shunt Method

Nad

0x01

Nad

0x03

Nad

0x04

The bus shunt method requires a more complex

hardware in the slave, consisting of switchable

current sources and pull-up resistors.

These are controlled in the break signal phase of

the subfunction 0x02 frames by the slave in such a

way that at the end of the break, the most distant

slave recognizes that he is the one.

Thus the slave furthest away from the master knows

that it is to take over the NAD contained in this

frame and then no longer participates in the further

sequence.

At the break of the next 0x02 frame, the slave now

furthest away will recognize its position and take

over the NAD accordingly.

This will be repeated until all slaves were

connected.

Shunt method: Here the NADs distributed in the

auto addressing sequence are assigned from the

farthest to the next slave, i.e. exactly the opposite

as with the daisy chain method.

Slide-111 30.03.2022

Macro programming - debugging

When programming more complex operations in macros, it is helpful to be able to track the

operation of a macro to find programming or operation errors.

This is where the Macro Command Macro Print helps (example SDF TestPrintDebug.sdf).

Slide-112 30.03.2022

Macro programming – error handling

Even in a correctly programmed sequence, errors can occur during execution, for example

because a defective test object does not respond at all. A carefully developed SDF application

should be able to detect and handle these errors.

The result values of the individual Macro Commands (_ResultLastMacroCommand) already

show whether a command worked or not. The prerequisite for this is that the command, if

selectable, is executed blocking.

A TRY-CATCH mechanism has been implemented to avoid having to introduce an error

handling after every command in a macro.

Every error in the try block (green marking) automatically branches to the catch block (red).

Without errors the catch

block is skipped.

Slide-113 30.03.2022

Macro programming – Try-Catch

You can specify several Catch Block Start Commands one after the other, so you can

define areas in the Catch Block that are responsible for certain exceptions.

Therefore there is the option to define an Exception Value as filter in the Catchblock

Start Command.

If two Catch Block Start Commands are directly behind each other, the area after the

second CatchStart is executed for both Exception Values.

Slide-114 30.03.2022

Macro programming– Try-Catch

The Try-Catch command can also be used as a switch case construct, as

known from other programming languages.

The Throw command can also be

used outside a Try Block to raise

an exception.

Here it replaces the switch

statement.

The catch block implements the

different case branches.

The last catch block start without

exception value serves as default

branch and catches all switch

values that are not handled by a

case branch.

Slide-115 30.03.2022

MB-II Log functions

After installing a micro-SD card, the MB-II can create log files which can be accessed via the

integrated website of the device.

There are 2 application variants.

A.) Continuous logging

By creating and uploading a log configuration, logging is activated and data is permanently

written to the log file as specified in the log configuration file.

B.) SDF controlled logging

Specially formatted macro print commands to control logging from the SDF.

Open log file, close and discard.

The file name can be generated from the SDF.

For example, you can define the creation of a separate log file for each inspected part, and define

the serial number read out as the file name.

Slide-116 30.03.2022

MB-II Log functions

A.) USB-Logging without USB stick

Logging is also started by creating and uploading a log file. The special feature, however, is that the USB

logs can be downloaded directly. This means that the logging function can be implemented on existing

devices even though no SD card is installed.

Slide-117 30.03.2022

The Baby-LIN firmware and the LINWorks software are constantly being further developed.

Both can be obtained free of charge in the current version directly from our customer portal.

(https://www.lipowsky.de/downloads/)

For the firmware update of the Baby-LIN devices the application blprog.exe is included in the

download package.

This application takes over the update process largely automatically if the files have been unpacked

from the ZIP into a separate directory.

New unit variants will be added in 2023

• New product base for Baby-LIN-III, Baby-LIN-RC-III

• First baby CAN device planned as entry-level variant

If you have any questions or suggestions, please feel free to contact us at any time by phone: 06151-

93591-0 or by email: info@lipowsky.de

We are also happy to visit your computer via TeamViewer to support you on site in case of problems.

Stay up-to-date

https://www.lipowsky.de/downloads/
mailto:info@lipowsky.de

Slide-118 30.03.2022

Baby-LIN feature matrix

Baby-LIN-RC-

Plus

Features
Baby-LIN-II Baby-LIN-RC-II Baby-LIN-RM-III HARP-5 Baby-LIN-MB-II

LINWorks compatible

SDF transfer USB 2.0 USB 2.0 USB 2.0 USB 2.0

SDHC card

Ethernet

web interface

RS-232

LIN-Bus Interfaces 1 x LIN 1 x LIN 1 x LIN 1 x LIN 1 x LIN

Optional LIN-Bus Interfaces 1 x LIN 1 x LIN 5 x LIN

Optional CAN-Bus Interfaces

Optional CAN-FD Interfaces

1 x CAN HS/FD

1 x CAN-LS/HS/FD

1 x CAN HS

1 x CAN LS

1 x CAN-HS

2 x MIF-CAN-FD

Digital Inputs/

Digital Outputs
1 x Digital Output

8 x Digital Input

6 x Digital Output

1 x Digital Input

1 x Digital Output

1 x Digital Input

2 x Digital Output

Special features Option for SD Card

support

Digital In – and

outputs, analogue

inputs,

LIN voltage switch,

12 V node supply

generator

Logging on internal

micro-SD card,

logdata accessed by

device webpage

Typical applications PC-Interface PC-Interface and

hand-held

commander

PLC-coupling or

stand-alone bus

simulator

Hand-held control

with bus data display

PC/PLC coupling via

LAN or RS-232

