
Baby-LIN

Unified Diagnostic Services V1.1

Lipowsky Industrie-Elektronik GmbH

Römerstraße 57 | 64291 Darmstadt | Germany

Phone: +49 (0) 6151 / 93591 - 0 | Fax: +49 (0) 6151 / 93591 - 28

Website: www.lipowsky.com | E-Mail: info@lipowsky.de

https://www.lipowsky.com
mailto:info@lipowsky.de

1 Objective 2

2 Creation of protocol 2

2.1 Hide Expert Settings . 2

3 Creation of service 3

4 Definition of Request Payload 4

4.1 Constant mapping (Service ID) . 5

4.2 Signal mapping (DataID) . 5

5 Definition of Response payload 6

6 Protocol related system signals 7

7 Execution a service 8

8 Processing the response data 11

8.1 _formatRspBufasHexByteString . 11

8.1.1 Macro description . 11

8.2 _formatRspBuf_ZeroTerminatedAsciiString . 12

8.2.1 Macro description . 12

9 LIN Identifier 13

10 Userful helper macros 15

10.1 Error Handling . 15

11 Example SDF 16

12 Support information 16

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 1

https://www.lipowsky.com

1 Objective

UDS (Unified Diagnostic Services) is a diagnostic protocol layer, which is used on LIN and CAN. On LIN it builds on DTL (Diagnostic Transport Layer)

and on CAN it builds on ISO-TP. Both use different frame types to allow for sending of data objects bigger than the frame size, segmentation of data on

sender side and reassembly of data on receiver side.

LIN and CAN both use frame types SingleFrame, FirstFrame and ConsecutiveFrame. Using DTL or ISO TP in protocols, the generation of First Frame

and Consecutive Frames is automatically done by Baby-LIN. The same applies to the other direction, when receiving slave responses longer than one

frame.

DTL is a subset of ISO TP, ISO TP has one more frame type (FlowControl Frame) and some more parameter option. So most information given in this

application note applies to LIN and CAN applications. As both are described as SDF protocol definition, you even can copy a protocol description from

one bus section to another bus section. Screenshots in this document will be created on a LIN section, but sample SDF will be supplied in a LIN and a

CAN version.

We will describe all necessary steps to create the UDS Service 0x22 (Read Data by ID), which is one of the most used UDS services in ECU identification,

testing and EOL check. This service is used to read data form a ECU.

As all UDS service it has an 8 Bit Service Id (0x22) and a 16 Bit parameter (data id). The data id is used to select the data object, which you want to

read from the ECU. The correlation between data id and data supplied is ECU specific, and needs to be known to use this service. You also will learn

on how to pass the data id to this service and how to access the response from the ECU.

2 Creation of protocol

First step is the creation of protocol. Goto Protocols section in SDF item tree. Right-Click on Protocols entry or in right empty protocol window, to Add

protocol.

2.1 Hide Expert Settings

When you start using protocols, it might make sense to select "Hide expert settings" in the

menu line. This will reduce the display content , to show the most important and typical

properties only. Later, if you have more experience, you might decide to Show all settings,

which give you access to more parameters.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 2

https://www.lipowsky.com

To define the protocol properties, you open the protocol edi-

tor by doubleclicking on the new protocol in left tree or in right

Window. This opens the protocol editor, which allows def-

inition of all common properties for services defined in this

protocol. First two things to do, is the definition of a proto-

col name, which we named UDS here and to set the protocol

type to DTL.

Now we can start definitions of services for this protocol.

3 Creation of service

Create new service by right click in Service Window and selecting Add This

adds the service properties display, which has 3 sections:

1.) Common service properties, like name, comment and the definition for

Request + Response or Request Only protocol.

2.) the request properties, as the frameId used for Request, the Payload size

and the slot time, and the mappings to define the request payload content.

The request payload can be defined by mapping constants byte value or by

mapping of signals.

3.) the response properties, as the frameId used for response, the payload

size and the slot time, and the mappings to define where the response pay-

load will be stored. Response data can be stored in signal mappings only.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 3

https://www.lipowsky.com

So in this sample we decide to name the service "0x22 Read Data By Id", and of course we need Request and Response, as we want to receive the

data by the response.

For LIN the proposed frameId's 0x3C (for Request) and 0x3D for response will be okay, as for LIN Diagnostic communication is always executed with

these both frame id's.

For Can this is a little bit different, here you also might have a specific frame id pair for all ECU's or you also might have an own frame id pair (for request

and response) per ECU. In this case the NAD can be omitted and you have one byte more space for your payload.

Before we can start defining the payload of Request and Response services, we have to define virtual signals, which we can map to these services

mappings. So in this example with service 0x22, we need a 16 Bit data id for the request and we assign up to 16 data bytes for the response data. You

should know the maximum possible response length for this service, so you can assign the appropriate number of virtual signals.

• Request Payload size: 3 Bytes

• The signals for mappings are defined in the Virtual signals section:

4 Definition of Request Payload

The UDS service id for the request will be defined as constant (0x22), but the 16 Bit data id will be defined by a signal mapping. This will allow us to

implement the ReadDataId Service as a generic service, which will retrieve the used data id from a virtual signal DataId, when executed.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 4

https://www.lipowsky.com

Additional we assign the system signal @SYS_SERVICE_REQUEST_NAD, which is needed to assign the NAD used for this diagnostic service. If this

system signal is not assigned, the NAD wildcard 0x7f would be used instead.

After defining the appropriate signal (DataId) for request mapping, we go back to protocol section to define the protocol service request mappings. The

Service Id 0x22 will be defined by Constant mapping (1) and the data id by a Signal mapping (2).

4.1 Constant mapping (Service ID)

4.2 Signal mapping (DataID)

The 16 Bit signal DataId should be mapped to request payload. DataId is a 16 bit value and UDS protocol uses a different Byte Order than standard LIN

Signal mappings. Standard LIN Signal mappings are Least Significant Byte first (Intel Byte Order).

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 5

https://www.lipowsky.com

But in UDS, values larger than 8 Bits are mapped Most Significant Byte first (Motorola Byte Order). To achieve that, the byte order has to be changed

from Intel to Motorola. To define the position of the value within the payload, the offset needs to be set to the bit position of the Least significant Bit. So

this is 16 (LSBit of Byte 3 in Payload)in this case.

5 Definition of Response payload

We assume that the response payload will be maximal 16 Bytes in length. So we go to virtual signal section and define 16 RspByte Signal, each with 8

bits in size.

Then we map these signals to the service response.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 6

https://www.lipowsky.com

6 Protocol related system signals

Besides the system signal @SYSSERVICE_REQUEST_NAD, we already introduced there are additional protocol related system signal. In our sample

we additional need the system signal @SYS_SERVICE_RESPONSE_LEN, so we are going to define it in the virtual signals section.

You can add it by add system signal wizard or by creating a new signal and changing the name accordingly.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 7

https://www.lipowsky.com

Here a short overview of all protocol related system signals. All system signals can be found in SessionConf in the System Signal Wizrad with more

information.

• @@SYS_SERVICE_RESPONSE_LEN

• @@SYS_SERVICE_REQUEST_LEN

• @@SYS_SERVICE_RESPONSE_NAD

• @@SYS_SERVICE_RESPONSE_LEN

• @@SYS_SERVICE_P2_EXTENDED

• @@SYS_SERVICE_FLOWCTRL_BS (only applicable for CAN))

7 Execution a service

A protocol service is executed by the macro command Execute service. So, we first create a macro Uds-ReadDataById in our sample file. First command

in this macro is the start bis command. And the second macro command is the Execute Service Command (Type Bus)

This command will send the request with the DataId mapped to the request frame. So the first trial run could be done by saving this SDF after adding 3

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 8

https://www.lipowsky.com

items to the Gui-Elements section.

Now we can load this SDF on the Baby-LIN device with SimpleMenu for a first test. For this first test on LIN we can work without a slave node attached.

So we can see how a request is build, and how the NAD

(@@SYS_SERVICE_REQUEST_NAD) and DataId is mapped to the Request frame.

So, we open the LINWorks SimpleMenu software. The attached Baby-LIN should appear

in the device list.

After connecting to the device, we can download the SDF, which we just

created and stored in SessionConf.

After loading the SDF, we should see the GUI elements, which we defined in SessionConf.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 9

https://www.lipowsky.com

1. open Report Monitor (to see frames)

2. input NAD, with value Hex 0x10 and DataId with value Hex 0x1122

3. execute Macro, if LIN supply is connected properly you will see the request frame in report monitor

If you came to this point, you can change NAD and DataId in SimpleMenu Gui and repeat MacroExecution. You can see how the NAD and DataId in

request frames change. This is the point, when we need to connect a slave node to the Baby-LIN, who can respond to this request. So you need to have

a slave and to know the NAD and a supported DataId for UDS service 0x22.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 10

https://www.lipowsky.com

8 Processing the response data

Reading out data is usually only the first step in DTL services. The next step is to process the data received. The SDF offers several possibilities for

this.In this example, I would like to show you how the information from the service can be output directly as a HexArray or ASCII string. The result is

then stored in the macro Result string.

For the processing of the response data we need 2 helper macros.

8.1 _formatRspBufasHexByteString

8.1.1 Macro description

First, the ResponseLen of the last service is stored in a virtual signal in order to be able to work with it in the further course. Then it is checked whether

the ResponseLen is longer than our defined buffer and might not be processed.

In the next step, we skip the first 3 bytes when converting the data into a HexByte string, because the SID and DataId are stored there. Now the response

has been checked and prepared so that the DataBytes it contains can be appended to the MacroResult string step by step. This is done in a loop where

the first byte overwrites the string and all others are then appended.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 11

https://www.lipowsky.com

The decisive MacroCommand is "Print on Macro result

string". The curly brackets define how and which parameter

is appended to the result string. In our case it is the Local-

Variable3, 2 digits as a hex value.

The macro result string can be seen in the channel message window. If the macro is included in the GUI, the result string is also displayed there after

the macro has been executed.

8.2 _formatRspBuf_ZeroTerminatedAsciiString

8.2.1 Macro description

In this macro, the response dates are output as ASCII strings via the MacroResult string. In the first step, the ResponseLen is saved again and it is

checked whether the length matches the defined buffer.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 12

https://www.lipowsky.com

In the next step, DataBytes that do not correspond to the ASCII code or are blank characters are replaced by zeros. This improves the readability of the

ASCII output. After the response data has been prepared, the data can now be appended to the result string as ASCII code with the macro command

"Print on Macor Result String".

With the MacroCommand "Print on Macro Result string" the

data of the response is finally processed again.

The curly brackets determine which parameter is appended

to the result string and define the type of output. In this case,

it is the value of the signal RspByte3 as an ASCII string.

The macro result string can be seen in the channel message window. If the macro is included in the GUI, the result string is also displayed there after

the macro has been executed.

With the two helper macros _formatRspBuf_ZeroTerminatedAsciiString and _formatRspBufasHexByteString you have now become acquainted with two

possibilities of response data processing. The macro result string can now be used in further steps. On the one hand, the user has a visual confirmation

of the correct slave response and on the other hand, the information in the result string can be used in further macros. The application possibilities are

numerous.

9 LIN Identifier

The Lin protocol has the possibility to address the bus participants at the Lin node via a standardized service and thus to read out the response NAD

Supplier ID and Function ID of the participant. This service can be used to test whether the bus participants are responding correctly.

The following macro template shows the execution of the LIN service.

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 13

https://www.lipowsky.com

The macro can be executed via the GUI field in the Simple Menu. First, the bus is started with the Sub Macro "_startBus". By setting the service request

NAD to the wildcard 127, all bus participants on the node are addressed and can respond to the request.

Now the service LinIdentification is executed by the protocol

Diag. The FrameIDs 0x3C and 0x3D are reserved for diag-

nostic services and enable communication between 2 bus

participants independent of the schedule.

The data of the service frame are defined under the settings of the constant mapping. In our case, the "B2 00" service is set there, with which the bus

participants at the LIN node can be identified.

With the mapping of the response data, the information of the IDs is stored in virtual signals. These are then output subsequently via "Print on Debug

report".

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 14

https://www.lipowsky.com

With the mapping of the response data, the information of

the IDs is stored in virtual signals. These are then output

subsequently via "Print on Debug report".

After identifying the bus participants, the next step could be

to change the supplier and function ID or to set up services

that only communicate with certain participants at the node.

10 Userful helper macros

• _startbus

The macro _startBus is used to start the LIN bus and to execute the schedule table. Furthermore, it is checked whether the bus voltage is present and

if not, an exception is thrown. By executing this macro, you can spare yourself the task of starting the bus in the SimpleMenu.

10.1 Error Handling

The exception of a macrocommand execute service is always done in blocking mode, so it will only go to the next macro command line, after the service

has been completely processed. The result of this processing can be positive, if the request and response frames could be transferred successfully, and

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 15

https://www.lipowsky.com

the response payload was mapped to the defined signals.

The result can also be negative, e. g. if an ECU is not answering at all to a request, or if the answer had the wrong length (in case the answer length

was explicitly given in the service definition). The result of an execute service operation, can be retrieved, by evaluate the value of _ResultLastNactro←֓

Command, in the macrocommand after the execute service.

The _ResultLastMacroCommand, will have the value 0 if everything worked. However, if a value other than 0 is returned, this will result in the output of

a message in the form of an error code.

• _handleException

The _handleExeption macro evaluates the MCR error codes and transfers them to applications error codes. This makes troubleshooting much easier.

11 Example SDF

You can download the example SDF "UDS-Step-By-Step.sdf" and "UDS-Step-By-Step_sim.sdf" in the download area on our website under the following

link. Link: https://www.lipowsky.de/downloads/

12 Support information

In case of any questions you can get technical support by email or phone. We can use TeamViewer to give you direct support and help on your own PC.

This way we are able to sort out problems fast and direct. We have sample code and application notes available, which will help you to make your job.

Lipowsky Industrie-Elektronik GmbH realized many successful LIN and CAN related projects and therefor we can draw upon many years of experience

in these fields. We also provide turn key solutions for specific applications like EOL (End of Line) testers or programming stations.

Lipowsky Industrie-Elektronik GmbH designs, produces and applies the Baby-LIN products, so you can always expect qualified and fast support.

Contact informations Lipowsky Industrie-Elektronik GmbH, Römerstr. 57, 64291 Darmstadt

Website: www.lipowsky.com Email: info@lipowsky.de

Telephone: +49 (0) 6151 / 93591 - 0

©2021 Lipowsky Industrie-Elektronik GmbH Application Note

Römerstraße 57 | 64291 Darmstadt | Germany Date : 2021-12-13

Phone: +49 (0) 6151 / 93591 - 0 Version: V1.1

Website: www.lipowsky.com Page 16

https://www.lipowsky.de/downloads/
https://www.lipowsky.com/contact/
mailto:info@lipowsky.de
https://www.lipowsky.com

	Objective
	Creation of protocol
	Hide Expert Settings

	Creation of service
	Definition of Request Payload
	Constant mapping (Service ID)
	Signal mapping (DataID)

	Definition of Response payload
	Protocol related system signals
	Execution a service
	Processing the response data
	_formatRspBufasHexByteString
	Macro description

	_formatRspBuf_ZeroTerminatedAsciiString
	Macro description

	LIN Identifier
	Userful helper macros
	Error Handling

	Example SDF
	Support information

